
Abstract
In our modern world, taking advantage of Artificial Intelligence (AI) to gain insights
from data is becoming more prevalent day by day. Graphical Processing Unit (GPU)
systems use multiple cores to perform parallel processing, running select workloads
to decrease processing times. Compared to GPUs, Central Processing Units (CPUs)
have fewer cores; previously, this resulted in less capacity for parallelized processing.
To move beyond this limitation, Intel has released new hardware that runs typical
AI mathematical computations more efficiently on the CPU, and has also released
libraries with hardware optimizations that enable an additional increase in
performance. This white paper analyzes the performance impact of Intel® Optimized
Libraries on AI inference workloads running on the CPU. To test the performance
impact, we utilized IBM Watson NLP (Natural Language Processing)—an IBM
InnerSource project delivered throughout IBM's software portfolio to products
such as IBM Watson Natural Language Understanding (NLU)—in combination with
Intel Optimized Libraries on supported hardware, and observed upwards of 35%
improvement in overall function throughput in NLP tasks.

Introduction
AI applications are widely used to gain insights from data, assist users with queries,
create content, and more. Workloads for AI applications are resource-intensive,
requiring complex mathematical computations.

Typically, GPUs contain thousands of processing cores. Distributing a process to
run in parallel over these multiple cores can decrease processing times due to the
overhead involved. CPUs, on the other hand, contain considerably fewer cores,
limiting the effectiveness of parallelization.

AI workloads are comprised of mathematical operations with effective performance
that can be increased by running in parallel. Deploying them on a GPU over multiple
cores improves performance. Studies of similar workloads running on both a GPU
and a CPU have shown that the GPU performed 4-5 times faster than the CPU.1

However, the accelerated performance provided by GPUs comes with an expensive
price tag. GPUs are in high demand for activities such as high-definition PC gaming,
cryptomining, digital media editing, and other performance-critical applications.
In addition, AI products that initiate inference requests need to deliver fast reaction
times; if users experience delays in getting results for an inference request from an
AI model, that can negatively impact the way they view the product. For these
reasons, the demand for GPUs has outstripped the supply, resulting in shortages
in the market.

Intel® Xeon® Scalable processors feature integrated AI accelerators through Intel®
Deep Learning Boost technology, which enables better performance running AI

Table of Contents

Abstract . . 1

Introduction . . 1

Intel Optimizations. 2

IBM Watson NLP 2

Experiments. . 3

Results and Analysis 4

Conclusion. . 5

Intel® Xeon® Scalable processors deliver increased performance for IBM
Watson NLP customers.

This paper is a joint effort
by the engineering teams of

Intel Corporation and IBM.

Lokendra Uppuluri
Cloud Software Architect, Intel

Corporation

Preethi Venkatesh
AI Customer Engineering Manager,

Intel Corporation

Waleed Q. Khan
Software Developer,

IBM Research, IBM

White Paper

IBM Watson NLP Performance
with Intel Optimizations

workloads when compared to previous generations of CPUs.
To leverage these new hardware capabilities, Intel has also
released optimized versions of popular Python packages with
new instruction sets. IBM Watson NLP is a popular Natural
Language Processing (NLP) library used internally across
IBM’s software portfolio for text-based applications. This
paper analyzes the performance gains achieved by Watson
NLP when using Intel Optimized Libraries on supported
hardware.

Intel Optimizations
Hardware Optimizations
Intel Xeon Scalable processors provide the foundation for a
powerful data center platform that delivers an evolutionary
leap in agility and scalability. Disruptive by design, this
innovative processor enables new levels of platform
convergence and enhanced capabilities across compute,
storage, memory, network, and security.

Intel optimizations for AI leverage the latest processors with
improved hardware features, improved instruction sets (Intel®
Advanced Vector Extensions (Intel® AVX-512) and Vector
Neural Network Instructions (VNNI)), as well as better
memory and thread management. They also take advantage
of out-of-the-box software features from widely popular
Machine Learning and Deep Learning frameworks.

Intel AVX-512 boosts performance and throughput for the
most demanding computational tasks in applications such as
modeling and simulation, data analytics and machine learning,
data compression, visualization, and digital content creation.
Intel® Deep Learning Boost (Intel® DL Boost) with VNNI
acceleration is built in specifically to run complex AI workloads
on the same hardware as existing workloads.

Software Optimizations
Intel® AI Analytics Toolkit (Intel® AI Toolkit)
The Intel AI Toolkit offers high-performance, deep learning
training on Intel® XPUs. It integrates fast inference into the
AI development workflow with Intel-optimized deep learning
frameworks for TensorFlow and PyTorch, pretrained models,
and low-precision tools. The toolkit also delivers drop-in
acceleration for data pre-processing and machine learning
workflows with compute-intensive Python packages (NumPy,
SciPy, Modin, scikit-learn) and XGBoost, all optimized for Intel
XPUs. Optimizations explored in this study include NumPy
and SciPy, as well as Intel optimizations for TensorFlow
through the Intel® oneAPI Deep Neural Network Library
(oneDNN).

NumPy/SciPy
Intel versions of NumPy and SciPy are optimized with the Intel
oneAPI Math Kernel Library (oneMKL), replacing Eigen’s
compute math with oneMKL calls, providing efficient access
to native FFT optimizations from a range of NumPy and SciPy
functions. NumPy automatically maps operations on vectors
and matrices to the BLAS and LAPACK functions wherever
possible. Since oneMKL supports these de facto interfaces,
NumPy can benefit from oneMKL optimizations through
simple modifications to the NumPy scripts. One of the great
benefits with oneMKL optimizations is the performance boost
gained from leveraging SIMD and multithreading in NumPy’s
UMath arithmetic and transcendental operations across the

range of Intel CPUs, from Intel® Core™ processors to Intel
Xeon Scalable processors.

TensorFlow with oneDNN Optimizations
Intel optimizes deep learning frameworks, including
TensorFlow and PyTorch, with the oneDNN library. As an open-
source, cross-platform performance library of basic building
blocks for deep learning applications, oneDNN uses new
hardware features and accelerators available on Intel
hardware. These optimizations are designed to accelerate key
performance-intensive operations such as convolution, matrix
multiplication, and batch normalization. oneDNN also
leverages graph mode computation by fusing ops that are
compute- and memor y-bound to fur ther accelerate
computation.

Starting with TensorFlow release version 2.9, oneDNN
optimizations are available by default. Google introduced the
environment flag TF _ ENAB LE _ON EDN N _OPTS in
TensorFlow 2.5 to help enable oneDNN optimizations, and
users were expected to set this to “1”.

Below are the key building blocks that oneDNN optimizes:
•	 Convolution
•	 Matrix multiplication
•	 Pooling
•	 Batch normalization
•	 Activation functions
•	 Recurrent Neural Network (RNN) cells
•	 Long Short-Term memory (LSTM) cells

Note that oneDNN Just-In-Time (JIT) compiles the
operators at runtime, leveraging the later vector instruction
set available on your hardware (Intel® AVX2, Intel AVX-512,
or Intel AVX-512 VNNI instruction sets).

In optimizing the network, oneDNN rewrites graphs with 1:1
mapping or replaces them with custom ops based on the
execution mode and custom ops support.

•	 Graph mode: oneDNN graph rewrite pass can do either
1:1 op mapping or replace a subgraph of standard TF
operations with a single, fused oneDNN custom op (e.g.,
Conv2D+FusedBatchNorm+Relu).

•	 Eager mode: TensorFlow processes one operation at a
time in eager execution. oneDNN eager op rewrite pass
only performs 1:1 operation mappings (replacing the
operation with its corresponding oneDNN operation, if
one exists).

IBM Watson NLP
IBM Watson NLP is a state-of-the-art, text-based Natural
Language Processing solution. It has been widely adopted
within IBM and is bundled in more than 20 IBM products. Some
examples of product use cases for IBM Watson NLP include:

•	 IBM Watson Natural Language Understanding (NLU)
uses Watson NLP to extract meaning and metadata from
unstructured text and data.

•	 IBM Watson Discovery uses Watson NLP for search and
text-analytics from data.

•	 IBM Watson Studio is a data science platform that directly
exposes capabilities from the Watson NLP library to users.

White Paper | IBM Watson NLP Performance with Intel Optimizations 2

IBM Watson NLP Tasks
IBM Watson NLP takes advantage of the concept of “NLP
tasks” to divide algorithms by the schema of their responses.
An example of this is the “classification” task, which can be
implemented by a wide variety of algorithms. All algorithm
implementations for an NLP task adhere to a base Application
Programming Interface (API). This makes the utilization of
different algorithms easier for the user, as algorithms can be
swapped without changes to the consuming code. An
algorithm can support multiple languages, but another
algorithm in the same task category may not support the same
number of languages. The Watson NLP documentation
website lists all the supported languages for each algorithm
available.

Experiments
IBM Watson NLP provides a performance test suite developed
for inference testing for each algorithmic implementation.
The input for each inference request is curated by analyzing
customer usage, so testing is done on real-world scenarios.

Performance data collection experiments run on two machines
with identical specifications. Table 1 provides the hardware
and Operating System (OS) specifications of the machines
running the performance tests.

For performance testing, Watson NLP was built and runs
inside a docker image. This ensures environment consistency
between tests. The resources for the docker container are
limited to 1 CPU and 20 GB of RAM. All performance tests run
in a sequential manner, and no parallelism is invoked. The
performance run collects metrics of interest while the tests
are running and outputs the results in a comma-separated
values (CSV) file for easy consumption.

Collected Metrics
The performance test suite collects a variety of metrics for
analyzing Watson NLP’s performance over a broader scope.
However, the key metric assessed to measure the impact on
performance is Function Throughput (Kcodepoints/sec).

For all algorithms tested, the size of the raw text sent for
inference is tracked, as is the time required by the algorithm
to process the input. Function Throughput (Kcodepoints/sec)
represents the total size of raw text in Kcodepoints sent to the
algorithm over the time needed to process that input. It is
important to note that the recorded time used for calculating
Function Throughput is the processing time for the algorithm
under test; any time spent pre-processing the raw text into
the correct format is recorded in a separate variable.
Additionally, if multiple inference requests are made to the
algorithm as part of the tests, the Kcodepoints size and
duration are cumulative.

The package test-suite also collects metrics for CPU and RAM
utilization. Since the tests are run sequentially in a docker
container, analyzing the CPU and RAM statistics of the
container results in a close approximation of the resource
utilization for each algorithm. Figures for CPU and RAM
utilization are collected by running "docker stats" on the
container at a two-second interval while the algorithm’s test
is running.

To run the experiments, the following two builds/branches
are tested and compared against one another.

1.	 Base Build is the base experiment, using Watson NLP.

2.	 Intel Build is the optimized build, using Watson NLP
 with oneDNN optimizations enabled in TensorFlow.

Table 2 specifies the versions of key software and packages
used in the builds.

White Paper | IBM Watson NLP Performance with Intel Optimizations

OS Ubuntu 18.04.5 / GNU Linux

Kernel Version 4.15.0-135-generic

Platform x86_64

CPU(s) 40

Byte Order Little Endian

CPU Model Intel® Xeon® Silver 4210 CPU

Thread(s) Per Core 2

CPU Speed 2.20 GHz

RAM 791 GB

Table 1. Performance machine specifications

Python 3.8.8

NumPy 1.21.4

SciPy 1.6.2

TensorFlow 2.8

Table 2. Software and package version

3

https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/watson-nlp.html
https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/watson-nlp.html

Results and Analysis
BiLSTM Entity Mentions
BiLSTM Entity Mentions is a Bidirectional Long Short-Term
Memory (BiLSTM) neural network model that leverages
character- and word-level representations to extract entities
(e .g . , p eo pl e, o r g a niz atio ns , a n d d ates) fro m tex t .
Representations are modeled in both forward and backward
directions, and are eventually processed by additional
statistical modeling techniques to ensure that the tag assigned
to each word in a sequence takes into account the tags of its
neighbors. This typically enables more cohesive results. Entity
extraction is useful for a wide variety of tasks, such as query
understanding in search engines and chatbot interactions
with humans.

The Function Throughput results are shown in Figure 1. The
model supports multiple languages (such as English, French,
and Spanish), marked along the x-axis. The plot shows that
the model performs faster for all supported languages when
using the Intel Build.

Document BERT Sentiment
Document BERT Sentiment is a model that leverages the
BERT (Bidirectional Encoder Representations from
Transformers) language model for the task of document
se nti m e nt cl a ssif i c atio n . B ERT u ses b i d i r e c tio n a l
representations in a masked context; it has been shown to be
effective on a wide variety of NLP tasks, especially those where
context is highly important. Document Sentiment Analysis is
used for many practical applications, such as identifying
unhappy customers and social media analysis.

The Document Bert Sentiment model supports more than 20
different languages. The results for Function Throughput can
be viewed on Figure 2. The average percentage increase
across the model is approximately 15% with the Intel Build—a
substantial increase in performance for this class of use case
workload.

White Paper | IBM Watson NLP Performance with Intel Optimizations

Figure 1. BiLSTM Entity Mentions result comparison

Figure 2. Document Bert Sentiment result comparison

BiLSTM Entity Mentions Function Throughput (Kcodepoints/sec) - Factor Change and Absolute Value Plot

Test Case

F
ac

to
r C

ha
ng

e
F

un
ct

io
n

T
hr

o
ug

hp
ut

(K

co
d

ep
o

in
ts

/s
ec

)

50

40

30

20

10

20

15

10

5

0

0

ar de en es fr it ja ko nl pt zh_s Average
Change

Abs Sum
Difference

Factor
Change

Base
Build

Intel
Build

Absolute
Sum
Difference

Document BERT Sentiment Function Throughput (Kcodepoints/sec) - Factor Change and Absolute Value Plot

F
ac

to
r C

ha
ng

e
F

un
ct

io
n

T
hr

o
ug

hp
ut

(K

co
d

ep
o

in
ts

/s
ec

)

Test Case

16

14

12

10

8

6

4

2

0
1

0.8

0.6

0.4

0.2

0
ar da de cs en es fi fr hi it he ja ko nl nb nn sk sv pl pt ro ru tr zh_s Average

Change
Abs Sum
Difference

Factor
Change

Base
Build

Intel
Build

Absolute
Sum
Difference

4

References
 1. E. Buber, B. Diri, Performance Analysis and CPU vs GPU Comparison for Deep Learning, in: 2018 6th International Conference on Control Engineering & Information Technology
(CEIT), IEEE, 2018, pp. 1–6. https://www.researchgate.net/publication/334168063_Performance_Analysis_and_CPU_vs_GPU_Comparison_for_Deep_Learning

White Paper | IBM Watson NLP Performance with Intel Optimizations

Conclusion
This study presents an analysis of the performance of Watson
NLP inference requests running on CPUs. The primary
objective was to study the effect of Intel Optimized Libraries
for ML/AI workloads on supported hardware. Two builds of
Watson NLP were compared: one using Intel-optimized
packages and the other without. Performance testing for
inference requests was performed on these builds using the
multiple algorithms available in Watson NLP. The tests were
run multiple times to account for variability. When using Intel
oneDNN TensorFlow optimizations, IBM Watson NLP
exhibited an increase of up to 35% in function throughput for
NLP tasks including text and sentiment classification, and
embeddings. This performance improvement has a positive
effect on the overall performance of IBM products such as
IBM Watson Natural Language Understanding (NLU).

Incorporating Intel Optimized Libraries on supported hardware
for applicable AI/ML workloads can increase performance.
No discernable effect on CPU and memory utilization was
recorded between the two builds.

Learn more at:
https://www.intel.com/content/www/us/en/partner/showcase/ibm/overview.html

5

Notices and Disclaimers
Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/PerformanceIndex.
Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates.
Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy. Intel technologies may require enabled hardware, software, or service activation.
No product or component can be absolutely secure.
Your costs and results may vary.
You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-
exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.
All product plans and roadmaps are subject to change without notice. The products described may contain design defects or errors known as errata which may cause the product to deviate
from published specifications. Current characterized errata are available on request.
Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any
warranty arising from course of performance, course of dealing, or usage in trade.
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document, with the sole exception that code included in this document is
licensed subject to the Zero-Clause BSD open source license (0BSD), https://opensource.org/licenses/0BSD.
© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.
ACG6378WNP

