
Abstract
In our modern world, taking advantage of Artificial Intelligence (AI) to gain insights 
from data is becoming more prevalent day by day. Graphical Processing Unit (GPU) 
systems use multiple cores to perform parallel processing, running select workloads 
to decrease processing times. Compared to GPUs, Central Processing Units (CPUs) 
have fewer cores; previously, this resulted in less capacity for parallelized processing. 
To move beyond this limitation, Intel has released new hardware that runs typical 
AI mathematical computations more efficiently on the CPU, and has also released 
libraries with hardware optimizations that enable an additional increase in 
performance. This white paper analyzes the performance impact of Intel® Optimized 
Libraries on AI inference workloads running on the CPU. To test the performance 
impact, we utilized IBM Watson NLP (Natural Language Processing)—an IBM 
InnerSource project delivered throughout IBM's software portfolio to products 
such as IBM Watson Natural Language Understanding (NLU)—in combination with 
Intel Optimized Libraries on supported hardware, and observed upwards of 35% 
improvement in overall function throughput in NLP tasks.

Introduction
AI applications are widely used to gain insights from data, assist users with queries, 
create content, and more. Workloads for AI applications are resource-intensive, 
requiring complex mathematical computations.

Typically, GPUs contain thousands of processing cores. Distributing a process to 
run in parallel over these multiple cores can decrease processing times due to the 
overhead involved. CPUs, on the other hand, contain considerably fewer cores, 
limiting the effectiveness of parallelization.

AI workloads are comprised of mathematical operations with effective performance 
that can be increased by running in parallel. Deploying them on a GPU over multiple 
cores improves performance. Studies of similar workloads running on both a GPU 
and a CPU have shown that the GPU performed 4-5 times faster than the CPU.1

However, the accelerated performance provided by GPUs comes with an expensive 
price tag. GPUs are in high demand for activities such as high-definition PC gaming, 
cryptomining, digital media editing, and other performance-critical applications. 
In addition, AI products that initiate inference requests need to deliver fast reaction 
times; if users experience delays in getting results for an inference request from an 
AI model, that can negatively impact the way they view the product. For these 
reasons, the demand for GPUs has outstripped the supply, resulting in shortages 
in the market.

Intel® Xeon® Scalable processors feature integrated AI accelerators through Intel® 
Deep Learning Boost technology, which enables better performance running AI 
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workloads when compared to previous generations of CPUs. 
To leverage these new hardware capabilities, Intel has also 
released optimized versions of popular Python packages with 
new instruction sets. IBM Watson NLP is a popular Natural 
Language Processing (NLP) library used internally across 
IBM’s software portfolio for text-based applications. This 
paper analyzes the performance gains achieved by Watson 
NLP when using Intel Optimized Libraries on supported 
hardware.

Intel Optimizations 
Hardware Optimizations
Intel Xeon Scalable processors provide the foundation for a 
powerful data center platform that delivers an evolutionary 
leap in agility and scalability. Disruptive by design, this 
innovative processor enables new levels of platform 
convergence and enhanced capabilities across compute, 
storage, memory, network, and security. 

Intel optimizations for AI leverage the latest processors with 
improved hardware features, improved instruction sets (Intel® 
Advanced Vector Extensions (Intel® AVX-512) and Vector 
Neural Network Instructions (VNNI)), as well as better 
memory and thread management. They also take advantage 
of out-of-the-box software features from widely popular 
Machine Learning and Deep Learning frameworks.

Intel AVX-512 boosts performance and throughput for the 
most demanding computational tasks in applications such as 
modeling and simulation, data analytics and machine learning, 
data compression, visualization, and digital content creation. 
Intel® Deep Learning Boost (Intel® DL Boost) with VNNI 
acceleration is built in specifically to run complex AI workloads 
on the same hardware as existing workloads.

Software Optimizations
Intel® AI Analytics Toolkit (Intel® AI Toolkit)
The Intel AI Toolkit offers high-performance, deep learning 
training on Intel® XPUs. It integrates fast inference into the 
AI development workflow with Intel-optimized deep learning 
frameworks for TensorFlow and PyTorch, pretrained models, 
and low-precision tools. The toolkit also delivers drop-in 
acceleration for data pre-processing and machine learning 
workflows with compute-intensive Python packages (NumPy, 
SciPy, Modin, scikit-learn) and XGBoost, all optimized for Intel 
XPUs. Optimizations explored in this study include NumPy 
and SciPy, as well as Intel optimizations for TensorFlow 
through the Intel® oneAPI Deep Neural Network Library 
(oneDNN).

NumPy/SciPy
Intel versions of NumPy and SciPy are optimized with the Intel 
oneAPI Math Kernel Library (oneMKL), replacing Eigen’s 
compute math with oneMKL calls, providing efficient access 
to native FFT optimizations from a range of NumPy and SciPy 
functions. NumPy automatically maps operations on vectors 
and matrices to the BLAS and LAPACK functions wherever 
possible. Since oneMKL supports these de facto interfaces, 
NumPy can benefit from oneMKL optimizations through 
simple modifications to the NumPy scripts. One of the great 
benefits with oneMKL optimizations is the performance boost 
gained from leveraging SIMD and multithreading in NumPy’s 
UMath arithmetic and transcendental operations across the 

range of Intel CPUs, from Intel® Core™ processors to Intel 
Xeon Scalable processors.

TensorFlow with oneDNN Optimizations
Intel optimizes deep learning frameworks, including 
TensorFlow and PyTorch, with the oneDNN library. As an open-
source, cross-platform performance library of basic building 
blocks for deep learning applications, oneDNN uses new 
hardware features and accelerators available on Intel 
hardware. These optimizations are designed to accelerate key 
performance-intensive operations such as convolution, matrix 
multiplication, and batch normalization. oneDNN also 
leverages graph mode computation by fusing ops that are 
compute- and memor y-bound to fur ther accelerate 
computation.

Starting with TensorFlow release version 2.9, oneDNN 
optimizations are available by default. Google introduced the 
environment flag TF _ ENAB LE _ON EDN N _OPTS  in 
TensorFlow 2.5 to help enable oneDNN optimizations, and 
users were expected to set this to “1”. 

Below are the key building blocks that oneDNN optimizes:
•	 Convolution
•	 Matrix multiplication
•	 Pooling
•	 Batch normalization
•	 Activation functions
•	 Recurrent Neural Network (RNN) cells
•	 Long Short-Term memory (LSTM) cells
 
Note that oneDNN Just-In-Time (JIT) compiles the  
operators at runtime, leveraging the later vector instruction 
set available on your hardware (Intel® AVX2, Intel AVX-512, 
or Intel AVX-512 VNNI instruction sets). 

In optimizing the network, oneDNN rewrites graphs with 1:1 
mapping or replaces them with custom ops based on the 
execution mode and custom ops support. 

•	 Graph mode: oneDNN graph rewrite pass can do either 
1:1 op mapping or replace a subgraph of standard TF 
operations with a single, fused oneDNN custom op (e.g., 
Conv2D+FusedBatchNorm+Relu).

•	 Eager mode: TensorFlow processes one operation at a 
time in eager execution. oneDNN eager op rewrite pass 
only performs 1:1 operation mappings (replacing the 
operation with its corresponding oneDNN operation, if 
one exists).

IBM Watson NLP 
IBM Watson NLP is a state-of-the-art, text-based Natural 
Language Processing solution. It has been widely adopted 
within IBM and is bundled in more than 20 IBM products. Some 
examples of product use cases for IBM Watson NLP include:

•	 IBM Watson Natural Language Understanding (NLU) 
uses Watson NLP to extract meaning and metadata from 
unstructured text and data.

•	 IBM Watson Discovery uses Watson NLP for search and 
text-analytics from data.

•	 IBM Watson Studio is a data science platform that directly 
exposes capabilities from the Watson NLP library to users.
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IBM Watson NLP Tasks
IBM Watson NLP takes advantage of the concept of “NLP 
tasks” to divide algorithms by the schema of their responses. 
An example of this is the “classification” task, which can be 
implemented by a wide variety of algorithms. All algorithm 
implementations for an NLP task adhere to a base Application 
Programming Interface (API). This makes the utilization of 
different algorithms easier for the user, as algorithms can be 
swapped without changes to the consuming code. An 
algorithm can support multiple languages, but another 
algorithm in the same task category may not support the same 
number of languages. The Watson NLP documentation 
website  lists all the supported languages for each algorithm 
available.

Experiments
IBM Watson NLP provides a performance test suite developed 
for inference testing for each algorithmic implementation. 
The input for each inference request is curated by analyzing 
customer usage, so testing is done on real-world scenarios.

Performance data collection experiments run on two machines 
with identical specifications. Table 1 provides the hardware 
and Operating System (OS) specifications of the machines 
running the performance tests.

For performance testing, Watson NLP was built and runs 
inside a docker image. This ensures environment consistency 
between tests. The resources for the docker container are 
limited to 1 CPU and 20 GB of RAM. All performance tests run 
in a sequential manner, and no parallelism is invoked. The 
performance run collects metrics of interest while the tests 
are running and outputs the results in a comma-separated 
values (CSV) file for easy consumption.

Collected Metrics
The performance test suite collects a variety of metrics for 
analyzing Watson NLP’s performance over a broader scope. 
However, the key metric assessed to measure the impact on 
performance is Function Throughput (Kcodepoints/sec).

For all algorithms tested, the size of the raw text sent for 
inference is tracked, as is the time required by the algorithm 
to process the input. Function Throughput (Kcodepoints/sec) 
represents the total size of raw text in Kcodepoints sent to the 
algorithm over the time needed to process that input. It is 
important to note that the recorded time used for calculating 
Function Throughput is the processing time for the algorithm 
under test; any time spent pre-processing the raw text into 
the correct format is recorded in a separate variable. 
Additionally, if multiple inference requests are made to the 
algorithm as part of the tests, the Kcodepoints size and 
duration are cumulative.

The package test-suite also collects metrics for CPU and RAM 
utilization. Since the tests are run sequentially in a docker 
container, analyzing the CPU and RAM statistics of the 
container results in a close approximation of the resource 
utilization for each algorithm. Figures for CPU and RAM 
utilization are collected by running "docker stats" on the 
container at a two-second interval while the algorithm’s test 
is running.

To run the experiments, the following two builds/branches 
are tested and compared against one another.

1.	  Base Build is the base experiment, using Watson NLP.

2.	  Intel Build is the optimized build, using Watson NLP  
 with oneDNN optimizations enabled in TensorFlow.

Table 2 specifies the versions of key software and packages 
used in the builds.
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OS Ubuntu 18.04.5 / GNU Linux

Kernel Version 4.15.0-135-generic

Platform x86_64

CPU(s) 40

Byte Order Little Endian

CPU Model Intel® Xeon® Silver 4210 CPU

Thread(s) Per Core 2

CPU Speed 2.20 GHz

RAM 791 GB

Table 1. Performance machine specifications

Python 3.8.8

NumPy 1.21.4

SciPy 1.6.2

TensorFlow 2.8

Table 2. Software and package version
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Results and Analysis
BiLSTM Entity Mentions
BiLSTM Entity Mentions is a Bidirectional Long Short-Term 
Memory (BiLSTM) neural network model that leverages 
character- and word-level representations to extract entities 
(e .g . ,  p eo pl e, o r g a niz atio ns , a n d d ates) fro m tex t . 
Representations are modeled in both forward and backward 
directions, and are eventually processed by additional 
statistical modeling techniques to ensure that the tag assigned 
to each word in a sequence takes into account the tags of its 
neighbors. This typically enables more cohesive results. Entity 
extraction is useful for a wide variety of tasks, such as query 
understanding in search engines and chatbot interactions 
with humans.

The Function Throughput results are shown in Figure 1. The 
model supports multiple languages (such as English, French, 
and Spanish), marked along the x-axis. The plot shows that 
the model performs faster for all supported languages when 
using the Intel Build.

Document BERT Sentiment
Document BERT Sentiment is a model that leverages the 
BERT (Bidirectional Encoder Representations from 
Transformers) language model for the task of document 
se nti m e nt cl a ssif i c atio n . B ERT u ses b i d i r e c tio n a l 
representations in a masked context; it has been shown to be 
effective on a wide variety of NLP tasks, especially those where 
context is highly important. Document Sentiment Analysis is 
used for many practical applications, such as identifying 
unhappy customers and social media analysis.

The Document Bert Sentiment model supports more than 20 
different languages. The results for Function Throughput can 
be viewed on Figure 2. The average percentage increase 
across the model is approximately 15% with the Intel Build—a 
substantial increase in performance for this class of use case 
workload.
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Figure 1. BiLSTM Entity Mentions result comparison

Figure 2. Document Bert Sentiment result comparison

BiLSTM Entity Mentions Function Throughput (Kcodepoints/sec) - Factor Change and Absolute Value Plot
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Conclusion
This study presents an analysis of the performance of Watson 
NLP inference requests running on CPUs. The primary 
objective was to study the effect of Intel Optimized Libraries 
for ML/AI workloads on supported hardware. Two builds of 
Watson NLP were compared: one using Intel-optimized 
packages and the other without. Performance testing for 
inference requests was performed on these builds using the 
multiple algorithms available in Watson NLP. The tests were 
run multiple times to account for variability. When using Intel 
oneDNN TensorFlow optimizations, IBM Watson NLP 
exhibited an increase of up to 35% in function throughput for 
NLP tasks including text and sentiment classification, and 
embeddings. This performance improvement has a positive 
effect on the overall performance of IBM products such as 
IBM Watson Natural Language Understanding (NLU).

Incorporating Intel Optimized Libraries on supported hardware 
for applicable AI/ML workloads can increase performance. 
No discernable effect on CPU and memory utilization was 
recorded between the two builds.
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